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Wave trapping with shore absorption 
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SUMMARY 

Surface waves trapped over naturally gentle seabed topographies near coasts may decay in time due to energy 
absorption at the shore. The decay rate is computed in terms of the shore reflection coefficient for round 
islands and for seabed depth varying only normally to a straight beach, as in laboratory channels. This decay 
rate is liable to be considerably larger than that due to energy leakage to the open sea, but is still relatively 
small, since it is proportional to (frequency) -t . The resonant response of such modes may therefore still be 
important. 

1. Introduction 

Ursell [1] first showed that surface waves can be trapped near coasts even in an unbounded 

ocean. For periods of  less than a few hours, such trapping results from the influence of  the 

seabed: waves over deeper water travel faster, and the crests and troughs therefore turn gradual- 

ly towards the shallows. The reasonance that might arise from such trapping were studied by 

Longuet-Higgins [2] and by Shen et al. [3] for axisymmetric seabeds and for seabeds with depth 

dependent on only one Cartesian coordinate, as in typical laboratory channels (for brevity, 

referred to as channel topograhies hereafter). Longuet-Higgins' investigation was based on the 

longwave approximation away from shores with emphasis on certain, very special topographies, 

for which he discovered strong, narrow resonances in an unexpected frequency range. The study 

of  Shen et al. included shores and covered all but the longest waves on an approximation based 

on the natural gentleness o f  sedimentary seabed topographies, for which the seabed slope, ~ 

curvature, etc., are characterized by a small parameter. Large numbers of  potentially resonant 

frequencies were found for general topographies by' the spectral method of  Keller's ray theory 

('Geometrical Optics Approximation').  

Both investigations showed trapping to be complete and resonance, of  classical nature, for 

channel topographies. But for axisymmetric topographies, both found trapping to be neces- 

sarily incomplete, with energy leakage to the open sea, whence resonance must be o f  a non-clas- 

sical nature (referred to as quasi-resonance or spectral concentration in quantum theory). Since 

the same must be anticipated for real ocean topographies, the axisymmetric case aroused much 
interest as the simplest topography realistic in this important respect. 

The results of  Shen et al. [3] demonstrated the power and flexibility of  rational ray theory, 

but its basic formulation [4] is designed for self-adjoint problems and is unsuited to a discussion 
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of leakage or spectral concentration. To obtain information on the degree of resonant response 
or measure of spectral concentration, a more broadly based theory of surface wave refraction is 

needed. 
The gentleness of sedimentary seabeds implies that, over a distance of but a few wavelengths, 

even long surface waves travel virtually unchanged. Over longer distances, however, they are 
gradually modulated, and over larger continental shelves, even waves of tsunami length tend to 

be modified very substantially. Such modulation is characterized by a small parameter e re- 
presenting the ratio of the wavelength scale to the geographical scale of the distances over 

which the water depth changes by a significant fraction. A general theory aiming to predict the 
effects of such modulation on classical, small-amplitude waves to the first relevant approxima- 
tion with respect to e will here be referred to as refraction theory. 

Berkhoff [5] and Lozano and Meyer [6] have proposed that such a theory can be based on a 
refraction equation (Section 2) of Helmholtz type. It yields the appropriate approximation to 
the known exact solutions of the classical linear surface wave equations, it yields the rational 

ray theory [6] and it has been derived rigorously from the classical, linear equations under 
restricted circumstances [7]. Accordingly, it has been adopted as the basis of the present in- 
vestigation. 

Lozano and Meyer [6] have used it to predict leakage and response for trapped wave modes 

of axisymmetric islands of general shape and have found large numbers of frequencies of extra- 
ordinarily small leakage and correspondingly large, narrow resonant response. Indeed, the 

response is exponentially large in e, and an unusually sophisticated analysis extending mathe- 
matical WKB theory was required for its treatment. 

All these investigations, however, if they involved shores, were based on the assumption of 
solutions bounded at the shore, which implies perfect reflection of energy from the shore. One 
of the main reasons for this was the lack of concrete information on the shore reflection. It 
should be emphasized here that the study of shore reflection is not within the scope of refrac- 

tion theory, however small the beach slope; sufficiently close to  shore, the mechanism of sur- 
face waves is not at all one of modulation in the sense just described. For refraction theory, the 
shore reflection coefficient therefore represents a boundary condition that needs to be specified 
from external sources of information. Those sources, unfortunately, appear to be largely lack- 
ing at the time of writing. 

For axisymmetric islands, however, the theory of the refraction equation has been advanced 
by Lozano and Meyer [6] to a stage where it becomes possible to predict the dependence of the 
eigenvalues on the shore reflection coefficient analytically in a general way, and this is the 
object of the following. Similar information for channel topographies may be of value for 
experimental studies of wave trapping and might even open an avenue for obtaining, in turn, in- 
formation on reflection coefficients from measurements of edge wave decay. 

For channel topographies, trapping is complete and trapped modes do not decay in time, if 
shore reflection is perfect and viscous dissipation, negligible (as it is on the field scale to a sub- 
stantial degree [2]). Up to this point, therefore, Keller's rational ray theory [3] has been sufficient 
for channel topographies. Shore absorption, however, introduces a time decay for edge waves, 
and i t  becomes necessary to develop the refraction theory for channel topographies also on the 
more general basis of the refraction equation. This is done in Sections 3, 4. The analogous 
theory for round islands is then briefly summarized in Section 5. 
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Wave trapping with shore absorption 35 

The main result is that the logarithmic time decrement of the trapped wave modes due to 

shore absorption is 

Im w ~ ( 4 w  I ~'c(1) l) -1 log IRA[ 

to the first approximation in e where w denotes the frequency (predicted by Shen et al. [3]), 
R A denotes the amplitude reflection coefficient (so that 1 - [RA 12 is the fraction of wave 
energy absorbed), and I ~'c(1 ) I denotes a certain WKB integral. This decay formula applies to 

both channel topographies and round islands; of course the frequencies differ in the two cases, 
and so does the WKB integral, which is defined for channel topographies by (22) below and for 

round islands, by (37). 
The strongly resonant frequencies are relatively large, of the order of the reciprocal square 

root of the seabed slope, and the decay rate is correspondingly small. Of course, it is much 
larger than for round inslands with perfect shore reflection, where it is exponentially small in 

the seabed slope. Accordingly, the peak of the resonant response of the trapped modes to ex- 
citation by waves of the same frequency incident from the open sea [2, 6, 8] is much reduced by 
any degree of shore absorption. On the other hand, the frequency bandwidth of the response is 

correspondingly broadened. Since the peak response remains a relatively large one, it is still to 
be anticipated that these high-frequency modes make a prominent contribution to the total 

wave spectrum in many circumstances. 

2. Refraction equation 

When the mean water depth h does not change significantly over the distance of a wavelength, 
it is plausible that the local structure of the motion depends, to a first approximation, on the 
local depth h(x ,y )  but not on its gradient or higher derivatives. For small-amplitude waves 
governed by the classical, linear theory of surface waves [9] the first approximation to the 
velocity potential of waves of period 27r/6o must then be of the form 

O(x, y, z, t) = e x p ( - i w t )  cosh [k(z + h)] q~(x, y)/cosh (kh) 

where • is the surface value of the potential and the cosh factor represents the classical, vertical 
structure of waves over water of constant depth h. To satisfy the surface boundary condition, 
the wave number function k(x, y)  must be related to the depth h(x, y)  by the classical disper- 
sion relation 

k tanh (kh) = e~ 2 =- rl (a) 

The factor e appears because h and the vertical coordinate z are naturally measured in units of 
a typical depth H, but x, y are naturally measured in units of a topographic scale Hie >> H and it 
is convenient to adopt that scale also for l /k; ~7 serves to abbreviate the scaled, square frequency 
ca) 2 . Use of the full dispersion relation (1) will permit impartial coverage of all wave lengths. 

Substitution into the classical, linear surface wave equations 
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82~/0x 2 + 0 2 ¢ / a y  2 +e-202¢/Oz 2 =0 for O > z > - h ( x , y ) ,  
a4~/az = - e  ~2 c~/~t2 at z = O, 

(O(~[~x) Oh/3x + (a(~/Oy)~h/Oy + e -2 bc~/~z = 0 at z = -h ,  

and vertical integration lead to an equation for q~ (x, y) that can be plausibly approximated 
[6] by the refraction equation 

V(G V q~) + k 2 e-2 G ~I, = 0 (2)  

where the wave depth function 

G = [sinh (2kh) + 2kh]/[4 k cosh2(kh)] (3) 

can be interpreted as a measure of the degree to which the surface wave feels the seabed; in the 
1 

longwave limit kh -+ O, (1) gives k 2 ~ 77/tl and G ~ h. For ~ (x, y) = G~q s, the refraction equa- 

tion becomes 

_ 1  1 

V2t~ + [e-2k 2 - G ~v2(G~)] ~ =0. (4) 

The questions arising in connection with wave trapping are wave scattering problems defined 
by three pieces of information, namely the differential equation (4), a shore condition specify- 

ing the local relation between the incident and reflected waves there, and a radiation condition 

specifying the role of the open sea (or the wave maker). The main function of mathematics is to 
establish the characteristic relation between the shore and radiation conditions brought about 
by the differential equation describing the physical wave mechanism. That relation involves 
only certain average properties of the seabed topography, which therefore needs to be specified 

only in general terms. 
For ease of presentation, this will be done separately for channel topographes (Section 3) 

and round islands (Section 5). The rigorous WKB analysis furnishing the first asymptotic ap- 

proximation to the characteristic relation for channel topographies will be sketched in Section 
3. For the similar analysis for round islands, reference may be made to [6] and it will be sum- 

marized only briefly in Section 5. 

3. Channel topography 

When the depth depends only on one Cartesian coordinate x, the same follows for k and G, 
by (1) and (3), and the potential may be Fourier-analyzed in the y-direction in terms of modes 

q'(x, y )  = w(x )e  iny 

with integer n, for which the refraction equation (4) reduces to 
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1_ ! 

d2w/dx 2 = [n 2 - kZ/e 2 + G-2 d2G2 /dx2] w (5) 

and for sufficiently small e, this square bracket is close to e-2f(x) with 

f (x)  = n2 e 2 - [k(x)] 2 , (6) 

1 1 

except right at a shore, where G -~ (G ~)" is singular. 
The depth h(x) will be assumed to increase monotonely with x, with typical shore character 

at x = 0 so that h ' (0)  > 0. Then the dispersion relation (1) shows the wave number k(x) to be 

singular at x = 0 and for real frequency, monotone decreasing with x to a limit koo/> r/ as 

x ~ ,~. Only values of  In I e above the cut-off value k,,o will be considered here, and the func- 

tion f (x)  in (6) then has a root X. For simplicity, extreme shelves [3] will be excluded by the 

assumption that f (x)  has only one real root for real 7- For natural seabeds, h (x) is smooth, and 

since only certain average properties are relevant, no generality is lost in assuming h (x) analytic 

on a neighborhood of  [0, ~ )  (including, at large Ix I, a sector I arg x I ~< ao with e-independent 

ao > 0). 
The wave depth G(x) is then similarly analytic, with simple root at x = 0, and f (x)  is ana- 

lytic on a neighborhood of  (0, oo). By (1), the wave number k is also analytic in r /=  e ~  2, for 

fixed x, on a neighborhood N of  r/= 1, and this also carries to f and G ~ . For near-real r/, the 

shore singularity of  f remains at x = 0 and the root X0)  ) of  f remains near-real and simple. 
It follows that x = X(r~) is a simple turning point [10] of  (5) and x = 0, a singular turning 

point of  order - 1 .  Their Stokes lines (more precisely, anti-Stokes or principal lines) are the 
curves issuing from a turning point on which the WKB variable (or Liouville-Green or Langer 

variable) 

x _1 

f be(s)] ~ds 

has constant real part. Standard theory [10 or 11] shows one Stokes line Lo to issue from 
x = 0 and three, L1 ,L2 and L . ,  from x = X(r~) (Fig. 1). They do not intersect [6], except that 

Lo and L both coincide for real 7/with the segment (0, X) of  the real x-axis. 

For definiteness, define 

1 

fo x [Yo (s)] ~ ~o(x )  = as, (7) 

f;: 
-~ 

~i(x) = ~.(s)] ds, i= 1,2,. ,  

1 _1 

with branch f ~  of  f~ that makes arg ~i(x) = rr/2 and I ~i(x) I increasing with Ix I and I x - X  l, 
respectively, on L i for i =  0,1,2, . .  For consistency with [6] the choice may be made for 
~7 = 1 so that arg f ' (X)  = 2rr and arg (x -X)  = - rr for 0 < x < X and 

argfo-+Tr,  arg~o ~¢r/2 on Lo as x ~ 0 ,  (8) 
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arg 
x - X  

L, 
on L1 

L2 

-..> {4. t2. l- 2n, arg ~i(x) "--> ff arg (x - X )  -~ -zr/3 
3 

o (x - x )  0 

(9) 

as I x - X  I -+ 0. For , / e  N, it is then defined by continuity in r/. This assures pairwise overlap 

between suitable neighborhoods D i of  the respective Stokes lines (Fig. 1) which can be envisaged 

first as discs about ~i = 0 cut along the negative imaginary ~i-axis; the Stokes line L i coincides 

with the positive imaginary axis (Fig. 2). 

If  the domains D i are restricted so that their images A i in the x-plane (Fig. 1) remain within 

the domain of  analyticity of  f ( x ) ,  standard theory [ 12 or 13] assures on each D i an exact solu- 

tion pair ui+-(x) of  (5) with asymptotic approximation 

_1 
+ - 4  

u i- ~ f i ( x )  exp [-+ ~i(x)/e] { c i + O(e) }, 
,_ ( lO) 

dui+-/dx ~ + e-Xfi 'exp [+ ~i/e] { c i -4- 0 (6 )  } 

on a subdomain D'.. The latter is obtained by deleting from D. an arbitrarily small, but e-in- ! 1 

dependent, neighborhood of  ~i = 0 and an equally wide strip about the negative imaginary 

~/-axis (Fig. 2). The normalization constants c i are traditionally defined by [ c i I = 1 and 4 argc i 
= lim argf/(x)  as x -+X on L i (for i = 1,2,.,  and as x ~ 0 for i = 0). These are the traditional 

WKB solutions whose exponential factor is purely oscillatory on L i. With the choice Reco > 0 

in (1), u[  represents a wave travelling away from X on L i (for i = 1,2,.,  and from 0, for i = 0), 

while ui-represents a wave incident on the turning point along L i. 

It follows that u/+ and u i-  are independent solutions of  (5) on D i and must,  on D i (q Dj, each 
be linear combinations of  u 7 and uj-  with x-independent coefficients. Standard theory [12] 
gives these relations as 

= u u- , (x)  = u'Uo+(X) 

0 

kl 
Fig. 1. Fig. 2. 

L i 

/ -  / 

f / 

F / 

/ "  / 

t "  / / • 
/ - -  

" " / I  

/ A 

(11) 

I f 
/ 

/ 
/ 

! 
/ 
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with 

p ' /p  = exp [-2~c01)/e ] { 1 + O(e)}, 

1 

~e(r~)= x [fo(x)] dx 

(12) 

and ~c = i I ~c I for real r/, by (8), and 

Ul+(x)e -ilr/6 = u , - (x )  { 1 + 0(6)} - i~(x){1  + O(e)}, 

Ul-(X)e-i~r/6 + = u , ( x ) .  
(13) 

The solution w(x) of (5) representing the actual surface wave potential must also be a linear 
combination 

w(x)= I ~gu~(x)+[3°u°(x)  on Do (14) 

! fi~(u~(x)+131-Ul-(X) on D1 (15) 

and since Do and D1 overlap, (11) and (13) imply 

/3~ =p'eiTr/6/3~ {1 + O(e)}, 

(30 = P ei~r/6[fll - ifl~ {1 + O(e)}]. 
(16) 

These establish a direct, asymptotic connection between the near-shore representation (14) and 
the deep-sea representation (15) of the wave potential and thereby express, to the first approxi- 
mation, all the information needed from the differential equation for the scattering problem. 

4. Shore absorption 

The ratio 

R A =/3o//3o (17) 

in (14) is the shore reflection coefficient expressing the (complex) amplitude/3~ of the wave 
u~ travelling out from shore in terms of that of the wave Uo travelling toward shore. 

The domain O 1 in (15) contains the image of a segment of the real x-axis beyond X (Fig. 1); 
in fact, the segment (X, oo) is mapped on the negative real ~1 -axis (Fig. 2) for real r/. Since 
f(x) is analytic on a neighborhood of (0, oo), D1 may be extended indefinitely in that direction, 
consistently with the asymptotic requirements [12]. This remains true for sufficiently near-real 
r/, moreover, by the hypothesis of a sectorial domain of analyticity for h (x). D 1 then contains 
a direction of indefinitely decreasing re ~1 that takes us out to the open sea, and the physical 
meaning of the wave potential requires that w then remain bounded. It follows from (10) and 
(15) that/3i- = 0. This is the radiation condition. 
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For a nontrivial solution, therefore,/3~ :~ 0 in (15), and now (16) and (12) transform (17) 

into 

R A = i ( u ' / ~ )  {1 + O(e)}  

= i exp [ -  2~c(r/)/e I {1 + O(e)} 

(18) 

which is the first asymptotic approximation to the characteristic relation between the reflec- 
tion coefficient R4 and the scaled, square frequency r/= ew 2 . 

The remaining task is to solve it for w in terms o fR  A . Now, e represents the general scale of 

the seabed slope, which can be normalized so that ~c(1) = (m - that is, ) ilre, 

I 

2~: In2e 2 k 2 1 2 d x = ( m - 1  - ~ ) 7re (19) 

with sufficiently large integer m. This is just the spectral condition of Shen et al. [3] who have 
shown it to have precisely one solution emn for given, not too small integers m and n below a 
(large) cut-off value dependent on the number n of wave crests counted across the channel. The 
integer m is a measure of  the number of  wave crests counted from shore outward in the x-direc- 

tion. 
To distinguish the information on amplitude and phase in the reflection coefficient, it may 

be written 

R A = exp [X + i8 - i7r/2] (20) 

with real k, 8 so that k = l o g  IRA[ is the logarithmic decrement of real amplitude in shore 
reflection and 8 - 7r/2, the phase shift. For perfect reflection [3], R A = - i, so that 8 is the 
relative phase shift due to absorption. The normalization (19) then brings (18) into the form 

~c(~?) -- ~c(1) = - (emn/2)  (X + i8) + O(e2). (21) 

But, ~e0?) is independent of e (for fixed ne) and analytic on a neighborhood o f t / =  1, by (12), 
(6) and (1), which also yield 

~j~(1)=i jo x ( k 2 - n 2 e 2 )  { k2dx =i[~c(1)[=/ :0 (22) 
1 + (k 2 - 1)h 

by (8). The function ~c(r/) therefore maps the e-independent neighborhood N(1) one-one onto 
an also e-independent neighborhood N '  of  ~c(1). Given IX + i81= Xl > 0, an eo > 0 can ac- 
cordingly be found so that 

N '  D { ~c : L~c - ~c (1)  I < eOXl/2  } = N  1' 
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and the inverse of ~c(r~) maps N [  back onto a neighborhood NI(1)  CNwi th  simple closed 

boundary on which 

[ ~c(r/) - ~c(1) I = COX1/2 > ern n IX + i6 t/2 

for all sufficiently small ern n > O, i.e., for all sufficiently large m, by (19). It follows from the 
principle of the argument (Rouch~'s theorem) that (21) then has just one root in N1 (1) and 

that this root is simple. Moreover 

~c(rl) - ~c(1) = (r/-1)~c(l  ) + O[(r / -1)  2 ] 

for this root, so that it is 

r? ~ 1 - lemn(~k q- i6)/~c(1 ) + O(e 2) (23) 

and has 

1 
Im rl ~ ~emnXl l ~ ( 1 ) l  + O(e2). 

By (20) and since r/= emn6O 2 , the logarithmic time decrement of the trapped wave modes due 

to shore absorption is therefore 

Im oo ~ (4ao I t ' ( l ) I )  -1 log IR a [ (24) 

where I~c(1) 1 is given by (22) and (1), the frequency co = 6m2n i s  given by (19)and (1)wi thX 
denoting the root of (6) for 7? = 1, and R A is the amplitude reflection coefficient at the shore. 

It should be mentioned that the mathematical argument is complete in deducing (24) from 
the refraction equation (2) as the first asymptotic approximation to the decay rate only on the 
implicit assumption that [RA [ is independent of e. If IRA [ ~ 1 as e ~ 0, then standard turning 

point theory may be inadequate for determining the decay rate and a much more subtle ana- 
lysis on the lines of [6] may be necessary, but in the present state of knowledge on R4,  this 

would appear premature. 

5. Shore absorption for round islands 

For axisymmetric seabed topography it is convenient to employ polar coordinates r, 0 in the 
mean water surface, with r denoting distance from the island center, normalized so that the 
island radius is 1. Then h depends only on r, with h(1) = 0 and h'(1) > 0 for a typical shore, 
and will again be assumed to increase monotonely with r and to be an analytic function o f r  on 
a (sectorial) neighborhood of the real r-axis. 

From the dispersion relation (1), the wave number function k = k(r) is then also seen to be 
analytic on a neighborhood of (1, oo) with singularity at r = 1, limit koo/> 7? = e6o 2 as r ~ 0% 
and monotone decrease in r between, for real r and 7. 
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The potential may now be Fourier-analyzed with respect to the angular coordinate 0 in 

terms of  modes 

• (r, o) = dnOr w(r) (27) 

for which the refraction equation (4) reduces to 

d 2 w/dr 2 = [e-2f(r) + g"/g] w(r), (28) 

f (r)  = (n e/r) 2 - k 2 , (29) 
_i 

g(r) = (rG) ~ (30) 

This looks quite similar to (5), (6), and g(r) has the same type of  branch point at the shore as 

G, but f (r)  has a character quite different from that of  the monotone functions f (x )  in (6), and 

this makes the round island much more typical o f  natural topographies. 

Since k-+ koo ~> 7/ as r ~ oo (for real r/), rk ( r )~  oo both as r ~ oo in the open sea and as 

r ~ 1 at the shore (where k is singular), and therefore rk(r) has a minimum. For simplicity, 

extreme shelves will again be excluded, and then rk(r) has only one minimum in [1, oo] for 

real 77 [3]. This minimum is a cut-off value for ne below which no trapping occurs [3] and it will 

be assumed here that ne takes a fixed value substantially above this cut-off value. Then f(r) in 

(29) has two roots, rl and r :  > r l ,  in (1, oo) for real 77, and (28) therefore has two turning 

points r l ,  r2 in addition to the singular turning point at the shore r = 1. Between rl and r2, 

f (r)  > 0 and the solution of  (28) have there the same monotone,  non-oscillatory character as 

have those of  (5) for x > X, where f ( x )  > 0. But in contrast to the case of  channel topographies, 

this solution character does not extend to the open sea: for r > r2, f (r)  < 0 and the solutions 

o f  (28) resume the wave character which they have between the shore and r = r l .  

• The roots r l ,  r2 o f f ( r )  depend on r~ = e~  2, by (29) and (1), and for complex r~, rl(rT) and 

r2(r/) are also complex. For near-real 7?, however, they remain near the real r-axis, as indicated 

in Fig. 3, which also shows the Stokes Lines from the turning points, on which 

± 

f r if(;)] 2 a .  

Fig. 3. 

¼ 

/ 

Journal ofEngineeringMath., Vol. 13 (1979) 33 4 5  

I-,, 



Wave trapping with shore absorption 43 

has constant real part. For real 77, L0 and L again coincide with the segment (1, rl ) of  the real 
, 

r-axis, and a Stokes Line L ~  coincides with (r2, ,,o) and therefore leads out to the open sea. 
The analysis of (28) proceeds [6] along lines similar to Section 3. The natural variables are 

F 1 

~i(rF r) = f r f  [fi(P)] ~ dp (31) 

1. 1. 

w h e r e  rj denotes a turning point q = 0 ,  1 or 2 with r0 = 1) and ft. ' ,  the branch o f f ( r )  2 that 
makes arg ~i = 1r/2 and I ~i I increasing with I r - rj I along the Stokes line L i (i = O, , ,  1 .... 4 or 
~ ,  cf. Fig. 3); the choices may be made in close analogy with (8), (9). Each Stokes line is then 
again associated with a pair of WKB solutions uT(r), u[(r) such that u/* represent a wave travell- 
ing away from the turning point rj along L i and u/-, a wave incident on the turning point along 
L i. These are exact and independent solutions, and the solution w(r) of (28) representing the 
actual potential must again be 

{ ~ u~(r) + ~o uo(r) 
w(r) = (32) 

~L uL (r) + ~£u20(r) 

with coefficients/3 i depedent on r/, but not on r. Those coefficients must be related, in turn, 
and standard theory [ 12] yields asymptotic appoximations to their relations, in particular [6], 

70/3~ =/3~/i + O(e)} + t3o exp [ -  2~0(1, rl)/e] f l  + O(e)} (33) 

with 70 bounded as e ~ 0 and Go (1, r l )  independent of e for fixed ne. 
From (32), the ratio 

R A =/3g//3o (34) 

is again seen to be the (complex) amplitude reflection coefficient. The radiation condition for 

islands, however, is quite different from that for channel topographies (Section 4) because the 
far field, beyond r = r2, is now a wave field. For real r/, where L,~ coincides with (r2, ~),  u~o is a 
pure wave radiated out to sea and u20, a pure wave incident from the open sea. For near-real ~7, 
this remains essentially true at large real r, even though the waves now have some degree of 
growth or decay with increasing r [6]. It follows from (32) that any solution w(r) ~ 0 must 
involve radiation out to, or in from, the open sea, or both. The existence question for trapped 
wave modes is therefore the following: Can (28) have nontrivial solutions w(r) without energy 
supply by radiation incident from the open sea? That is, for what values of ~ are there solutions 
with incident amplitude coefficient 

/320 = 0 

in (32), but with/3~ 4: 0? 
The answer is supplied directly by (33), (34), namely 
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0 = R A {i + O(e)} + exp [ -  2~0(1, r l) /el  ~ 1 + O(e2) } (35) 

to a first approximation for small e. For 77 = 1, 

f l  r -1 G0(1, rl) n=l = i I k2r z - n2e z I ~ r -1 dr = ~c(1) (36) 

from (31), (29), but for r/4= 1, ~0(1,r l )= ~c(r~), by (31), (29) and (1). Now e can again be 
normalized so that 

~ ) l T r e  ~e(1) = (m - 1 • 

with sufficiently large integer m, which is the spectral condition of  Shen et al. [3] for axisym- 

metric topographies and has precisely one solution e m n for given, not too small, integers m and 
n (below a large cut-off value) related to the crest count as in Section 4. With R A again ex- 

pressed in the form (20) the characteristic condition (35) becomes (21), whence we may pro- 

ceed literally as in Section 4 to obtain (24). The only change is that now [6] 

[ ~ ' ( 1 ) 1 = £  r, I k 2 - ( n e / r )  2 1 4 k  2 [ l + ( k  2 - 1 ) h ] - x d r  (37) 

by (36), (31), (29) and (1). 
The asymptotic argument just summarized depends again on the implicit assumption that the 

reflection coefficient R A ~ 1 as e ~ 0, which appears plausible. The theory, however, involves 
two basic limits, viz., wave amplitude -+ 0 and seabed slope e -+ 0, and there is some evidence 
[ 14] that the limit of R A may depend on the order in which the basic limits are taken! If R A -~ 1, 
moreover, (24) predicts zero decay rate in the limit e -~ 0, which is hard to reconcile with the 
prediction of (32) that a nontrivial solution without energy supply by radiation incident from 
the open sea must necessarily experience an energy loss by radiation out to the sea. It would be 
necessary to conclude that the solution tends to a trivial one as e-+ 0 and therefore, that the 
scaling underlying the formulation of the problem in Section 2 must be at a fault? 

For such reasons, Lozano and Meyer [6] made a much more precise analysis of (28) based on 
symmetries in the complex plane of ~ = ew 2 closely related to the property of energy conserva- 
tion inherited by (28) via the refraction equation (2) from the classical surface wave equations. 
They were able to prove that the connection formula (33) between the coefficients in (32) is 
actually of the form 

2 i n  7.o~L=~[1-(1-i)7-~l+O(e)~]+~oexp[-~+ leo ~ ] (38) 

with a(r/) bounded on the neighborhood N of 77 = 1, and real for real r/, and 

r2 ± 

7=exp[e -1  f r  I n 2 e 2 - k 2 r 2 l ~ r - l d r ] "  (39) 
1 
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The integral in (39) is positive for real 77 so that  7 -2 in (38) is actually smaller than  any power 

of e. If  we now normalize e so that  

I i ( o  - e e ) ,  ~c(1) = (m - ~) izre + 

then  (34) and (20) express the radiat ion condi t ion  fl~ = 0 as 

1 X + ( 1  i ) 7 - 2 { 1 + 0 ( e ) }  ~c(r~) - ~c (1) = - i ernn (40) 

which has a far, far smaller error term than  (21) and implies again (24),  provided only  that  X = 

log IR A I -+ 0 with e more slowly than 7 -2 . This removes the weakness o f  the WKB analysis first 

out l ined for the derivat ion of  (24);  that  formula is now seen to give the  decay rate even i f  the  

reflection coefficient R A -+ 1 quite fast as the seabed slope e ~ 0. 
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